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Abstract

A numerical model has been developed which can predict

both the unsteady flows within a wave rotor and the

steady averaged flows in the ports. The model is based on

the assumptions of one-dimensional, unsteady, perfect gas
flow. Besides the dominant wave behavior, it is also

capable of predicting the effects of finite tube opening

time, leakage from the tube ends, and viscosity. The

relative simplicity of the model makes it useful for design

and optimization, as well as analysis, of wave rotor cycles

for any application. This paper will discuss some details

of the model and will then present comparisons between

the model and two laboratory wave rotor experiments.

1.0 Background

The Wave Rotor is presently being investigated for use as

a core gas generator for multi-spool gas turbine engines in
order to achieve very high peak cycle temperatures and

pressures. The device, shown schematically in Figure 1. I,

uses unsteady waves to transfer energy directly to and

from the working fluid dlrough which the waves travel.

It consists of a series of constant area passages (tubes) that
rotate about an axis. Through rotation, the ends of the

tubes are periodically exposed to various circumferentially

arranged ponls in which the flow is steady, but which

initiate unsteady waves within the tubes. Because of the

unsteady nature of the device, each tube of the wave rotor

is periodically exposed to both hot and cold flow over

roughly equal time periods. The mean temperature of the

rotor material may therefore be expected to remain

considerably below the peak cycle temperature. This

characteristic, a comparatively low rotational speed for a

given mass flow (as determined through analysis), and the

absence of high torque loads, give the wave rotor potential

advantages over the conventional gas generator.

Analyzing the wave rotor is difficult for several reasons.

First, although the flows in the ports are steady, there is

no steady state analysis which allows their properties to be
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Figure I. I Wave Rotor Schematic

determined. The wave rotor must therefore be analyzed

by following the unsteady fluid dynamics that occur within

one or several of the passages (tubes) as they rotate past
the ports and walls. Second, the governing differential

equations of motion in the tubes are hyperbolic and often

have shock waves present. Closed form solutions of these

equations do not generally exist, so numerical methods
must be used. An effort is presently underway by the first

author to develop such a numerical model or code. The

initial phases of this effort were reported previously tIJ. In

that report the initial simplifying assumptions for the

model were presented. For reference these were uniform

cross sectional (i.e. one-dimensional), inviscid, perfect gas

flow, with tubes which were instantaneously exposed to

the ports in the manner of a ruptured shock tube

diaphragm. Furthermore, it was assumed that since each

tube in the wave rotor undergoes the same cycle,

following one tube was equivalent to following them all.

q'his amounts to an assumption that the tubes on the rotor

do not interact. These simplifications reduced the

modelling of the wave rotor to integrating the Euler

Equations. A comparison was made between the model

and an actual experimental wave rotor. It was found that

although the model was qualitatively correct, there were

significant discrepancies fi'om the experiment.

The present paper is intended to highlight some of the

modifications that have been made to the original model



ill orderto predictthe waverotor behaviormore
accurately.In particular,themodel,thoughstill one
dimensional,is nowcapableof includingtileeffectsof
viscosity,leakagefiomtheendsof thewaverolortubes,
andnon-instantaneousopeningof thetubestotheports.
Theseeffectshavebeenstudiedtosomedegreebyother
investigators.In particular,Eidelman_z_studiedfinite
openingtimeeffectsusinga twoditnensiolmlinviscid
code,attd"l'aussig_ investigatedall threeeffectswitha
onedimensionalmodel.However,Eidelnmn'scodeis
cotnputationallyexpensiveandthusnot practicalfor
analyzingentirewaverotorcycles.Furthermore, it does

11ol account for leakage or viscosity. Taussig's code is not

described in the literature with enough detail to

implement. Furthermore, he assumes that the leakage

effects are uncoupled from the wave phenomena, which

fi'om the present study, does not appear to be the case.

The paper will proceed by discussing the three

modifications outlined above in some detail, d_en

comparing the tnodified model to two simple wave rotor

experiments.

2.0 Finite Opening Time

It is often assumed in wave rotor analysis that the ends of

the tubes are instantaneously opened or closed as they

rotate into or out of the various ports. This may be

interpreted as assutning that the time required for the tube

to pass fi'om a fully open to a fully closed position (or

vice-versa) is ntuch less than the time required for a

characterislic wave to travel down the length, in practice
this is ahnost never the case, and the effects on the wave

rotor performance due to this so called finite opening time

can be substantial. Of course, the finite opening time
effects are highly three dimensional; however, it is

possible to obtain a reasonable estimate of them by
modifying the boundary conditions for the one
dimensional model. The discussion to follow will

consider the left end of the wave rotor tube; however, it

is understood that analogous conditions exist for the right
end.

Consider Figure 2.1, where the left end of the tube is

shown as it begins to enter the port region. Depending
upon the port conditions, the flow will be either in or out.

Looking first at the inflow scenario (a) it is imagined tllat

the flow in the port itself is isentropic relative to some

specified stagnation state, and that it instantaneously

adjusts to cotvditions downstream (i.e. steady nozzle flow).

Adjacent to this region is an imaginary "mixing region"
where the fluid changes from a highly non-uniform

distribution across the partially open tube on the left to

some mixed out average on the right. The mixing is also
imagined to occur instantaneously, and the extent of the

mixing region is assumed negligible. Adjacent to this

region is the first "cell" of the computing domain for

which, at the present time, the conditions are completely

known. Assuming that the flow is fi'ictionless in the

isentropic zone
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Figure 2. I Finite Opening Time Model

mixing zone, and that the pressure is tmiform across the

left face, the following nmss, momentum, and energy

equations may be written for a perfect gas:

A
pji _ -- _b, (2.1)

Pouo ---- e.-_l

Po
/

top0 +_.poui, -- 0u tt._L.A, -- _b, (2.3)

where !t is the total enthalpy. The subscripts 0 and e in

these equations designate the end and the begitming planes

of the mixing zone respectively, as shown in Figure 2. I.

If the pressure at the exit of the isentropic region, p_ is

specified, then given the known stagnation conditions of

A
e

the duct and the area ratio of the exit to the tube, ____, the

conditions at the exit are completely known and the

quantities _,°, _,,., and _b_.in equations 2.1-2.3 can be

calculated. Equations 2.1-2.3 may also be combined to
yield the quadratic

(2.4)



TMsinaybesolvedforu, (choosing lbe subsonic value).

With uo known, equations 2.1 and 2.2 may be used to

obtain p, and p,, so that the slate at the right end of tile

mixing zone is COml)letely known.

The condilions Ih, P_-and % in tile first computational cell

of the tube are also known. The difference between P0

and Ih will give rise to either a compression or expansion

wave travelling to the light. The pressure ratio across the
wave and the conditions in the first cell are suMcient

information to analytically determine the velocity behind

it, u.'. osing either the normal shock relations or isentropic

centered expansion etlt.ationg". Since nothing has been

said about tile choice of p,, it it not expected that u,,' will

be the same as th, calculated using equations 2.1-2.3. A

function amy be defined however as

y(iL)=t_,-u0 *. (2.5)

The proper choice of 1L is that for which y=0. This

cannot be fot,nd analytically but may be obtained using a

convenient numerical root finding technique (e.g. the false

point methtx.l°_). The values of P0, Po, and % obtained

tlnot,gh the solution of equation 2.5 are then assigned to

the left inmge cell of the computing space.

It is IX)ssible that the pressure p,. drops to the point where

the Ilow at tile exit of the iseniropic region is sonic but

where equation 2.5 has not yet reached zero. In this case,

it can no longer be assuined that p,. is uniform across the

tube and equation 2.2 can no longer be used. Equations
2.1 and 2.3 remain valid however, and ft, rtherlnore the

values of qb,,,and (1)_.become fl'ozen at their choked limits.

As such, equation 2.3 may be rewritten as

% -- (2.6)
[Dll I

Thus, for any vahre of Po chosen, t,o is known. Again. the
conditioliS in the first cell are known so thai another
fturction

y(p,,)=u.-u o" (2.7)

may be defined and the value of Po for which y=0 may be

found through the same methtxl as equation 2.5.

For outflow, consider Figure 2.1(b). llere, the duct is

assumed to be a constant pressure region with the
pressure, p,. known. Adjacent to this is a fictitious zone in

which the flow is iseniropic and which, like the mixing

zone above, adjusts instantaneously to flow conditions.
Again, conditions in the first cell of the computing space

are known. Asst,ming that the flow is unchoked at the

exit of the isentropic zone, and subsonic hi the first cell,

steady isentropic flow laws require that between planes 0

and e, the Mach numbers are related by

I/' lMa< -- - +Ma_, --y-7- (2.8)
tt  tP<•)

Thus. if p,, is specified Iheu the exit Math nu,nber is

known. Since the slate in the first cell is completely

known, specification of Po also completely determines the

state at the right plane of the isentropic zone (either

through normal shock laws or laws for centered fans as in

the inflow problenl above). With p,,, uo, and 0,, k,lown,

along with p,. and tile exil Mach ntrlllber, M<,, Ue and f)<.
niay be fouud using the relations for steady iseiltropic

flow. Again, nothing has been sakl about the choice of p,,;

however, in keeping with the assuinl_tions lakl down, the

correct value is that for which mass continuity is

nlaintained across the isentropic zone, namely

A
Y(P0) --"P u " -19oil o -- 0

¢ e AI

(2.9)

As wilh the inflow problenr, equation 2.0 must be solved

numerically using some iterative method. The resulting

values of the primitive variables for plane 0 are then

assigned to the image cell of the compt,ling space. If, in

the process of solving equation 2.9, the exit Mach number

drops below a vahle of-I.0 then the isentropic region is

asstnned choked and the values of" p,. and % coriesponding
to this condition are used.

Additional possibilities nlusi le considered for the outflow

condition if the flow is negatively supersonic in the first

cell. In this case p. is assigned a value, p," which would

create a stationary shock in plane 0"L The state at the

exit is then fotmd using equation 2.8 and the steady

iseutropic flow laws. The value of y in equation 2.9 is

then calcolated. If this value is greater than zero then the

iteration process may contint,e since it is iiow assured that

there is some p<<p0<p0" for which v=0. If v is less than

zero the ouly remaining possibility is that the flow in the

first cell is completely unaffected by the boundaries. In

this case, tile image cell will have no effect on the internal

compvtations and it may simply be assigned the values of
the first cell.

In the above discussion it is asst, med k,lown a priori

whether the flow ,esulling fronl tile iiulrosiiion of

boundary conditions will be inward or outward. In

acttrality, the code UlUSI anticipate the resulting flow and

then apply the appropriate model. This may be done in a

rather straighttbrward maimer as follows. If the tlow is

asst,med inward, then the ininimunl vah,e of equatkm 2.5

is obtained by setting p,. equal to the prescribed duct
stagnation pressure. In this extreme case, p, is also the



same as Poand the value of y is not only minimum, but
negative. The exit pressure, Pc must be lowered from this

value in order to bring equation 2.5 to zero. If, the value

ofy is found to be positive, then the assumption of inflow
was incorrect, and the outflow model nmst be used. It is

noted here that in the code, the same prescribed boundary
pressure is used whether the flow is in or out. Thus, for

inflow, the pressure is interpreted as a stagnation value

and an additional stagnation temperatu,e is needed. For

outflow, it is interpreted as a static pressure. An analogy
may be made here if the wave rotor duct is viewed as a

large reservoir or "tank". Plow into this tank simply loses

its kinetic energy at the tank stagnation pressure (i.e. jet

flow). Plow from the tank leaves isentropically at the

stagnation pressure.

(a)

(b)

Figure 2.2 Finite Opening Time Effects

As an example of the application of finite opening time

boundary conditions, Figure 2.2 shows a computed time

dependent pressure distribution in a hypothetical wave

rotor tube as the left side is exposed to a high pressure

duct. The pressure has been normalized by the initial

pressure in the tube and the time has been normalized by

the quantity L/a, where L is the tube length and a is the

initial speed of sound in the tube. For this calculation a

cell spacing of Ax/L=.02 was used, with an associated

time step of AIa/L=.008. Figure 2(a) illustrates the

scenario with instantaneous opening time. Here, a shock

wave is formed immediately and travels rightward with a
uniform speed u,h=l.65. Figure 2(b) shows the same

scenario with an opening time t,,_,p/L=0.3. Although it is
not possible to claim quantitatively that the results are

correct, it is fair to say that the applied boundary

conditions appear to generate the anticipated area-averaged

behavior in the tube. In particular, there is a certain

amount of time required for an actual shock to form, and

the speed at which it travels is slower than that in the case

where the opening was instantaneous. It is this effect on

wave speed that is critical for wave rotor design and

analysis and, as will be shown later, the approach
described above produces excellent agreement with

experimental data.

3.0 Source Terms

Aside from the effects of finite opening time, the fluid

mechanics in the wave rotor tube are dominated by one

dimensional, inviscid wave phenomena. As such, the

Euler equations serve as a good starting point for

predicting the time dependent behavior; however, there are

several effects which, while secondary, are not negligible.

in particular, it has been found that viscous effects, and

the effects due to leakage of flow from the ends of the

wave rotor tube to the casing can have a significant impact

on the behavior of the flow. As with finite opening time,
these effects are three dimensional: however, the one

dimensional model can again be modified to account for

them satisfactorily. The approach for both phenomena is

to add source terms to the original homogeneous
governing equations. The discussion to follow will first

consider tile addition of source terms in general to the

Euler equations, and the requirements for high order

accuracy. Following this, the particular form of the source
terms used for modelling viscous effects (friction) and

leakage effects will be presented.

The particular form of the modified Euler equations to be
considered is one in which the source term, like the flux

vector, is a function of the original conserved vector.
That is,

dw OF(w)
-- + _ - S(w) (3.1)
dt dx

For reference, the vectors w and F__have the respective
perli_ct gas lbrms:

4



pu
W__--- U2

(e+- U)

(3.2)

F _

W 2

(V-I)w._ _ 2 )2w,

.w,t t 2 )w,)

(3.3)

where I1 and e are the specific enthalpy and internal

energy respectively, and the numbered subscripts refer to

the elements of w. The form of S(w) has yet to be

specified.

The straightforward approach to numerically integrating
these equations is to expand all of the derivatives about a

point, i.e.

W "+i -W n 0W" 0eW"
--_ --i --, --i At

-- + + O(At z) (3.4)
At 0t 0d 2

F" -F" OF"
_+1 _-I _- -J +O(Ax 2) (3.5)

2Ax Ox

where the subscript n indicates the discrete temporal index

nat and i the spatial index iAx. Adding equations 3.4 and

3.5, then subtracting Ihe source term S_ from both sides of
the resulting equality yields

w "q -w" F" -F"
--I --I "-'I + 1 --_-I

4-

At 2Ax

Ow" 0F"
---S =__--t +__-i -S

-_ 0t Ox -i
(3.6)

0 2 W"

+ -____LAt +O(At 2).
Ot2 2

The numerical schenle on the left hand side approximates

the actual differential equation on the right up to a first
order truncation error of order O(At). This can be

OIW.

improved by finding a suitable approximation for --_
Ot2

After I,ax and WendrofP _, taking the time derivative of

equation 3.1 at the point n&c, iat yields

O2w O2F 0S
-- +-- --- (3.7)

Otz OxOt Ot

where the subscripts have temporarily been dropped.
Using the Jacobians defined as

OF OS
[A] - -- [B] - __

Ow dw
(3.8)

equation 3.7 may be rewritten as

-- + [A] = [B].___
dt 2

(3.9)

or, upon substitution of equation 3. I

,Yw__- --_-xOtz [A] ([A]S__}

OF

- [B]___4-[B]S_.

(3.10)

Multiplying equation 3.10 by At/2, replacing the spatial

derivatives on the right with their numerical equivalents

(note that these need only be first order accurate), and
addhlg this to equation 3.6 yields

w"+'-w" F" -F"
--I__--I 4- ---I+I --'4-I _Slt

At 2Ax -+

{ F" -F" F"-F"

+ ]+
> J

dw" dF"
At "S" = --I + --I _S,,+O(AI2,Ax 2)

-T [B]'-' 0t Ox -'

(3.1 I)

Here, the Jacobian [A],+m is the mean of two adjacent

cells, i.e. ?4([A]_.t+[A]0. The left hand side of this
equality, when set equal to zero is the second older

acct,rate numerical approximation to equation 3.1. This
may be remranged and compacted to the form

w "+' -- w'-(f" - f" i At + s:'At
--I --I \-I+I/2 -I- I/21 "_"

(3.12)

where

and

F" +F" F"-F"
f. -_+, -l At . -_+, --j-- - [A],+,a (3.13)
-*+"_ 2 Ax 2

s" = S" At • . , ,, ,,
-1 --1-"_'-_-([A]I+IS+,-[AJI-IE_,)

- At [B]I'fF" -F" 14-At[B]pS"
4Ax _+_ _-_/ 2 -_

(3.14)

The numerical flux estimate for the cell face, af+,a in

equation 3.13, has been chosen in this particular fashion



becauseit is identical to the conservative form found when

numerically approximating the homogeneous version of
equation 3.1. it is found in practice however, that this

estimation produces physically unrealistic oscillations in

the solution. To overcome this problem, equation 3.13 is

replaced with a high resolution, t,pwinding flux estimate
guaranteed to produce monotonic results in the

homogeneous Euler equations. This is based upon Roe's [7_

apl_roximate Riemann solver and is described in detail in

a previous report'L The numerical source estimate, _ in

equation 3.14 is seen to be based entirely on central
differences. This is physically intuitive since the sources

should not have any direclional bias. There is no way to

formally guarantee that the resulting scheme is monotonic

since equation 3.1 is not conservative (see Lax [3]);

however, the approach taken above will at least approach

monotonicity as the strength of the source term is brought

to zero. Furthermore, it is found in practice that this

method retains very sharp resolution of discontinuities.
This is illustrated in Figure 3. I where the method has been

applied to the scalar equation

0U OLI
__ + u__ -- culul. (3.15)
Ot Ox

The figure shows the initial profile, a half sine wave,

corresponding to t=0. Also shown in the figure are the
profiles at t=0.5 for three different values of the constant

c in equation 3.15, corresponding to positive, negative and

zero source term strengths. For this computation spatial
and temporal spacings of Ax=0.01 and At=0.005

respectively were used. There is no analytical solution by
which to verify the results; however, it is seen that the

shock remains sharp, and the pulse height and speed vary

as expected. Furthermore, although not shown here, the

stability of the scheme appears unaffected since the
maximum allowable CFL number was found to be

unchanged even for large values of c.
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Burger's Equation With a Source

3.1 Viscous Source Terms

The major effect of viscosity in the wave rotor tube is that

it creates boundary layers near the walls. These in turn
alter the behavior of the core flow which remains inviscid.

Naturally, a one dimensional model camlot analyze this
phenomenon per se; however, if the terms in the one

dimensional equations of motion are viewed as inlegral

averages of the values over the tube cross section, then the

viscous effects (except in the vicinity of shock waves)

become confined to the shear stress at the wall, and the

momentum equation takes the form

O O +OU 2) -- 4 r_'au (3.1.1)
.._.pu +__.(p - D-'--h-

Here, D h is the hydraulic diameter defined as _4A where
W

p

A is the cross sectional area of the tube and W o is the
wetted perimeter. The task now becomes one of obtaining

a reasonable estimate of r,.,,. Some researchers [4] have

used correlations conesponding to fully developed
turbulent pipe flow; however, considering typical tube

dimensions and the amount of time that the gas in the tube

is actually moving, this does not seem to be an appropriate
approach. An alternate estimate of the wall shear stress

may obtained by considering each discreet computalional

region of the tube to be a suddenly decelerated fiat plate

(or inversely a stationary plate wilh suddenly accelerated

fluid). The solution to such a problem, for incompressible
flow, is well known _8}and has the form

fi = U eft(q)

Y (3.1.2)

Here, U, is the speed of the freestream flow, v is the

kinematic viscosity, y is the distance fi'om the wall, and

erf is the error function. For the problem at hand, the

freestream velocity is replaced by Ihe local velocity in the
tube. 'Ille wall shear stress has the form

Ou ) _- 2up (3.1.3)

A characteristic time associated with the wave rotor is that

required for a wave to travel down the tube, namely t=l_,/a*

where L is the tube length and a* is the speed of sound at

some characteristic stagnation state. Substituting this into

equation 3.1.3, assuming constant viscosity, and non-

dimensionalizing by p, p, and a, the momentum
equation may now be written as



0 ,R n/
__(p u ) I,i ,. , --
{_t t c3x' y

I v,L
8 a_

(3.1.4)

,LI /p_.

Since the above analysis is only an estimate of the wall

shear behavior, the term G_appearing in equation 3.1.4 has

been added as a constant to be deternfined tlu'ough

v,L
_i

comparison with experimental data. The ratio _1 ia_ is
D h

a measure of the penetration depth of the boundary layer

into the tube and is generally small. When multiplied by
the additional constant terms however, the contribution to

the right hand side of equation 3.1.4 becomes significant

(on the onder of O. I).

3.2 Leakage Source Terms

Leakage in the wave rotor occurs fl'om the tube ends into

the rotor casing and vice versa, as ilhtstrated in Figure

3.2. I. As such, the leakage source terms are applied only

to the first and last cells in the computing domain and

they affect only the continuity and energy equations.

Consider the control volume shown in Figure 3.2.2. As

with the boundary conditions, it is assumed that the

leakage flow adjusts instantaneously to the conditions in

the cell. The leakage gap is imagined as distributed

uniformly along the cell in the manner of porosity.

Assuming that the flow is out of the tube, the isentropic

nozzle flow equation may be used to write

I_lh,Ak
dA,,,x

(3.2.1)

where _dA_ is the leakage area pet"unit length of the tube,
dx

and p,,,. is the presstnre in the center cavity of the wave

rotor. Incorporating this equation into the continuity and

energy equations yields

ow+ = -C I (3.2.2)
Ot Ox

where C_ is the leakage coefficient C I -- ( 2y
y-t ) ox

and A is the cross sectional area of the tube. The value

of _ may be estimated by assuming a rectangular
dx

tube cross section in which case it takes on the value

2b
i, where 6 is the leakage gap, h is the tube height, and
hAx

Ax is the numerical cell size. If the flow becomes choked

in the nozzle equation then the value of the flow fimction

f in equation 3.2.1 becomes frozen at the choked limit. If

the cavity pressure is higher than the cell pressure, then

the pressures and densities in equation 3.2.1 are replaced

with the cavity values and the cavity pressure in the flow

function is replaced with the cell pressure.

L'asing /

...........U..... .................'__....

Figure 3.2.1 Leakage Paths
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Figure 3.2.2 Leakage Flow Model
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It is notobviousfromequations3.2.2and3.3.3thatthe
sourcetermisafunctionof theconservedvectorw. More
importantly, tile fol'm of the Jacobian [B] is difficult to

obtain directly, it can however, be obtained through use
of the chain rule, namely

OS OS du
[B] = m - __

dw du dw

where u is the primitive variable vector (p, p, u) T.

4.0 Results

The results to be presented will compare predictions from
the model described in the preceding sections with two

laboratory wave rotor experiments. Both experiments
utilize the so called divider cycle (Figure 4.1). In this

cycle, the working gas (ah" in both cases) enters the wave

rotor through one port and exits through two others. In

one of the exit ports the stagnation pressure of tile gas is
higher than that which enters the wave rotor, in the other

it is lower. Although the practical utility of such cycles is
debatable, they serve as excellent vehicles for wave rotor

studies because they are relatively simple. In particular,

they do not require external heating devices such as a

burner, which would be needed in a full wave rotor gas
generator experiment. Furthermore, wave rotor divider

cycles clearly illustrate the concept of work exchange
through unsteady wave propagation.

tinge ¢}r theta

x/L x/L
(a) Kentfield (b)NASA

Figure 4.1 Proposed Experimental Wave Diagrams

The first experiment to be discussed is cunently being
conducted at NASA's Lewis Research Center. This wave

rotor is highly instrumented making it possible to obtain

both steady data in the ports and unsteady data from
several x/l., positions on one of the tubes as it rotates

through the cycle. The data which will be presented was

obtained from a single operating point. Unfortunately, just

after the experiment began operation, the supply air to the

entire facility was turned off for repairs. The experiment

will resmne in several months. The second experhnent
was performed by J. A. C. Kentfleld in the mid 1960's _9).

There is no unsteady data available from this experiment;
however, the steady results are extensive and as such, can

be used to test the capabilities of the model over a broad

range of conditions. Figure 4. I shows the simplified wave
diagrams which the two experiments were intended to

follow. Table 4.1 shows the relevant geometrical
dimensions and the gas conditions t.sed in the

experiments, it should be noted that the two experiments
represent relative extremes of the various effects that are

being modelled. Kentfield's passages had large cross
sections, were short, and had small end clearances. This

made the frictional and leakage effects small and the finite

opening time effects large. The NASA experiment on the

other hand, has passages with very small cross sections

and relatively large leakage paths.

Kentfield

0.60"Mean Tube Width, b

Tube Height, h 2.20" 0.40"

Rotor O.D., D 8.00" 12.00"

Rotor Length, L

End Clearance, 6

Rotor Speed, to

Cycles/Revolution

toM

PoM

r',,L

:t Equation 3.1.4

I 1.00"

0.007"

NASA

0.25"

I8.00"

0.01" ports
0.02" walls

6000 rpm 4150 rpm

3 1

555 R

4.70 psia

2.579

637 R

22.41 psia

2.553

Table 4.1 Experimental Parameters

The model was tested in the following manner. Tile

geometric parameters were entered into the code along
with the inlet stagnation conditions and exit static

pressures. Also entered was a guess at the pressure and
temperature in the cavity of the wave rotor. These values

are used in the leakage calculations. The code, which

actually follows a single tube, was then run through a

cycle. As it computed, a running sum of the mass

momentum and energy fluxes in the ports at each time

step was kept as well as a sum of the total leakage mass

and energy flow into the cavity. At the end of the cycle,

the cavity pressure and temperature were updated using

the leakage sums in a simple lumped parameter model of
the cavity region, and the cycle was run again. This

process was repeated until the cavity pressure and
temperature reached a steady value, and the total mass
flow into the wave rotor matched the total outflow. At

this point the integrated port fluxes were used to calculate

a representative uniform fluid state, averaged using a

constant area mixing calculatioff". This state was then

used to obtain the outflow stagnation conditions. The



condition of steady, matched flow in tile ports is termed

the limit cycle of the wave rotor for a specified set of i_n't

boundary conditions. It is the wave cycle which any tube

on the rotor will continually repeat. In comparing the

model with the Kentfield experiment a rather crude grid

spacing of Ax/L=0.02 was used in order to reach the limit

cycle condition as quickly as possible. The value of ot in

equation 3.1.4 was chosen so as to obtain the best overall

match to the data. For comparison with the present

NASA experiment, a finer grkl spacing of Ax/L=0.UI was

used and tile value of ot was chosen such that the

computed ratio of high pressure exit mass flow to input

mass flow, I_ matched the experiment. The two values of

0t are listed Ibr comparison in Table 4.1. It is seen that

they are quite close, despite the very different geometries

of the two experiments. This result lends some confidence

to Ihe analysis of the viscous effects.
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Figure 4.2 Unsteady Pressure Trace at x/L=.975

Figure 4.2 shows a pressure trace measured in the tube of

the NASA experiment, as it rotated through the cycle, at

a location corresponding to 2.5% fiom the right side of

Figure 4.1(b). All of the data has been non-

dimensionalized by tile inlet stagnation pressure. The

circular symbols repwesent tile extYerimental data, the solid

line was obtained using the model with friction and

leakage effects. The shaded regions indicate those

portkms of the cycle where the end of the tube nearest tile

transducer was adjacent to a wall. It can be seen that

thele is excellent agreement between predicted and actual

resolts. Furlhermore. it was fotmd that the predicted mass

flow through the rotor was only 8.3% higher than the

measured flow rate. This tliscrepallcy might be accounted

for by considering the blockage caused by the thickness of

the tube walls. For reference, the dotted line in the figure

represents the model output with only fi'ictiomd effects.

Although the timing of the waves appears co_iect the

overall match with the experimental data is much worse.

Fmthetmore, it was only possible to obtain the

exl:,erimental mass flow split, 15 if the fi'iction coelficient

0t was increased 2.24 times over the case with leakage

modelled. This result indicates that leakage flows have a

considerable effect on the wave pattern.
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Figure 4.3 Unsteady Pressure Trace at x/L=.250

Figures 4.3 and 4.4 show the same comparisons between

lnodel and exl_etiment for the x/L locations of .025 and

.50 respectively, as measured fi'om the left side of Figure

4.1(b). Again, the agreement is quite good. it is noted

that the predicted pressure in the tube at the end of lhe

cycle is slightly lower than the experimental pressure in all

three figures. Also, tlte predicted pressure in Figure 4.3,

just before the opening of the inlet port is too high. These

discrepancies may be due to imf_roperly specified

clearances (vah,es usexl in tile model were obtained from

specs, not measured) or errors resulting flora the

assumptions of leakage model itself.
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Figure 4.4 Unsteady Pressure Trace at x/L=.500

Figure 4.5 shows tile results of Kentfield's experiment

compared to the model predictions. Here, the ratio of the

high pressure exit stagnation presst, re to the inlet (medium

pl'essute) stagnation pressure is plotted as a ftmction of the

ratio of the low pressure exit stagnation pressure to the

inlet stagnation pressure for various values of the mass

flow ratio 1"5(high pressure port mass flow to total mass

flow}. The agreement between predicted and experimental

results is again, quite good. The largest cliscrepancies

appear in the lower right portion of the plot. In this

region, the mass flow, and corresponding port velocities

are quite low. The circumferential component of veh_ity

brought about by the rotation of the tubes is actually larger



than tile axial component generated by the waves and it is 3.

probable that this has a substantial effect on the

performance. It is interesting to note that the lines of data
all rise to the left and then abruptly stop. Kentfield

pointed out that beyond this point the flow rate could not
be increased. The same phenomenon was found in the 4.

model, although at slightly higher pressure.
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Figure 4.5 Kentfield's Divider Performance Curves
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5.0 CONCLUSIONS

A numerical wave rotor model has been described which

successfidly predicted the behavior of two experiments

with quite different geometries. The model is relatively

simple in that it is one-dimensional, but sufficiently

detailed to include the effects of viscosity, leakage and

finite opening time. It requires relatively little computing

time on a standard VAX mainframe (4.13 seconds CPU

time for one cycle with 50 cells on a VAX 9410) and is

therefore quite suitable for preliminary design purposes as

well as analysis of existing wave rotors.
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